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Abstract

The exact solutions of nonstationary contact problems of elastodynamics for a half-plane with the dry and
viscous friction in the contact zone having the contact edge point moving with arbitrary variable velocity along the

boundary of a half-plane are obtained in a closed form. A new method of solution based on the use of Radon
transform is used. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The initial boundary-value problems for an elastic half-plane considered in this paper, are the
examples of the nonstationary contact problems of elastodynamics with the dry or viscous friction in a
contact zone. The nonstationary contact problems of elastodynamics were studied by many authors.
Considerable progress has been made in these problems with frictionless contact (Flitman, 1959;
Bedding and Willis, 1973, 1976; Willis, 1973, 1989; Robinson and Thompson, 1974; Brock, 1976, 1977,
Brock, 1978, 1979; Cherepanov, 1979; Georgiadis and Barber, 1993, and others).

A nonstationary (transient) contact problem with friction (Coulomb's dry friction) was ®rst
considered by Brock (1981). In what follows, the dynamic problems with friction were investigated in
the works of Brock (1993), Brock and Georgiadis (1994) and Georgiadis et al. (1995). In doing so,
practically all the problems considered in these works, are self-similar (automodeling). The investigation
of automodeling contact problems gives a considerable useful information on the elastodynamic ®elds in
the contact zone (see Brock, 1993, Brock and Georgiadis, 1994; Georgiadis et al., 1995), but,
nevertheless, some elastodynamic contact e�ects lie outside the framework of automodeling description.
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From the viewpoint of mathematical analysis, no automodeling contact problems with friction and
moving with arbitrary variable velocity edge of the contact zone are di�cult even in the so-called
canonical case where the contact region is semi-in®nite. Application of the traditional methods to solve
these problems meets the great di�culties and, for this reason, the exact solutions of the problems of
this class are still absent.

In this paper, the nonstationary contact problems for an elastic half-plane with the dry or viscous
friction in a contact zone are solved by the new method (Shmegera, 1997, 1998). The method is based
on the use of Radon transform described brie¯y in Appendix A.

2. Statement of problems

Consider a homogeneous, isotropic and linearly elastic half-plane y < 0 and ÿ1 < x <1 under
plane-strain condition, where �x, y� are Cartesian coordinates. Let for t > 0, where t is the time, on the
boundary of half-plane the following boundary conditions for the components of vector displacement
w � fu, vg �u�x, y, t� and v�x, y, t� are the projections of w on the x-axis and y-axis, respectively) and the
components sy�x, y, t� and txy�x, y, t� of stress tensor are given. For x > l�t� and y = 0, where l�t� is an
arbitrary bounded function of time, the normal and tangential loads are applied. We can assume,
without loss of generality, that

sy�x, 0, t� � txy�x, 0, t� � 0 x > l�t�, t > 0: �1�
For x < l�t� and y = 0 the boundary of half-plane is interacting with a rigid body and the following
contact conditions occur:

1. the contact with Coulomb (dry) friction:

v�x, 0, t� � v0�x, t�, txy�x, 0, t� � ÿksy�x, 0, t�, sy�x, 0, t�R0, x < l�t�, t > 0; �2�
2. the contact with viscous friction:

v�x, 0, t� � v0�x, t�, txy�x, 0, t� � f
�
_u�x, 0, t� � w0�x, t�

�
, sy�x, 0, t�R0, x < l�t�, t > 0: �3�

Here k and f are the coe�cients of dry and viscous friction, respectively, _uk � @u=@ t, w0�x, t� is a mass
velocity of rigid body along the half-plane boundary �w0Rdl=dt),

u � @f
@x
� @c
@y

, v � @f
@y
ÿ @c
@x

,

sy � m

"
c21
c22

Dfÿ 2

 
@ 2f
@y2
� @ 2c
@x@y

!#
,

txy � m

"
Dcÿ 2

 
@ 2c
@x 2
ÿ @ 2f
@x@y

!#
, �4�

where m is a shear modulus, c1 and c2 are the longitudinal and shear wave speeds, respectively, and
f�x, y, t� and c�x, y, t� are the displacement potentials satisfying the wave equations
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Df � 1

c21

�f, Dc � C
1

c22

�c D � @ 2

@x 2
� @ 2

@y2
; ��:� � @ 2

@ t2
: �5�

The initial condition are zero:

w�x, y, t� � Çw�x, y, t� � 0, t < 0: �6�
The displacement must be bounded and continuous at the vicinity of point x � l�t� and y = 0 where the
type of boundary conditions changes, i.e.

w�x, y, t� ' a�t� �O�rE �, r40

�
r �

������������������������������
�xÿ l�t��2�y2

q �
: �7�

Here a�t� is a certain bounded function of time and

E > 0 for dl=dt � 0,
Er1=2 for dl=dt 6�0: �7a�

The condition (7) is equivalent (see e.g. Poruchikov, 1986) to the condition of the nonnegativity and
boundedness of the energy ¯ux at the point x � l�t� and y = 0 (the edge of the contact zone). This
condition is necessary for the uniqueness of solution.

We will seek the solutions of wave equations in the form of continuous (integral) superposition of
arbitrary plane waves (see Appendix A, and also Shmegera, 1997, 1998)

f�x, y, t� � Re
1

2pi

�
G
F1�z1�x, y, t, c�, c� dc,

c�x, y, t� � Re
1

2pi

�
G
F2�z2�x, y, t, c�, c� dc, �8�

where Fj�zj � (here and everywhere below j = 1, 2) are arbitrary, twice di�erentiable (or analytic, if zj are
of complex) functions. The functions zj are

zj � x� iZj, x � xÿ ct, Zj � gjy, gj �
��������������������
1ÿ c2=c2j

q
, i �

�������
ÿ1
p

: �9�

The branches of radicals �1ÿ c2=c2j �1=2 in the complex plane c with the cuts �ÿ1, cj� and �cj,1� along

Fig. 1. The contour of integration G and the cuts in the complex plane c.
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the axis Im c � 0 (Fig. 1), are ®xed by the conditions �1ÿ c2=c2j � > 0 for Im c > 0: The contour G is
shown in Fig. 1.

The displacements and stresses (4) in terms of Eqs. (8) and (9) are written as

u � Re
1

2pi

�
G

�
F 01�z1�c�, c� � ig2�c�F 02�z2�c�, c�

�
dc,

v � Re
1

2pi

�
G

�
ig1F

0
1�z1�c�, c� ÿ F 02�z2�c�, c�

�
dc,

sy � ÿmRe
1

2pi

�
G

�
g�c�F 001 �z1�c�, c� � 2ig2�c�F 002 �z2�c�, c�

�
dc,

txy � mRe
1

2pi

�
G

�
2ig1�c�F 001 �z1�c�, c� ÿ g�c�F 002 �z2�c�, c�

�
dc, �10�

where F 0j � @Fj=@zj, F
00
j �@ 2Fj=@z

2
j , and

g � 1� g22 : �11�
It follows from the representations (10) that to solve the problems (1)±(3) it is su�cient to ®nd the
functions Fj:

3. Problem with dry friction: general solution

Consider ®rst the problem with the boundary conditions (1) and (2). Substituting Eq. (10) (after
di�erentiating the condition for v�x, 0, t� in Eq. (2) with respect to x ) into these conditions, we rewrite
them in the form

Re
1

2pi

�
G
S
ÿ
x�x, t, c�, c� dc � 0, x > l�t�, t > 0,

Re
1

2pi

�
G
T
ÿ
x�x, t, c�, c� dc � 0, x > l�t�, t > 0,

Re
1

2pi

�
G

1

mR�c�
�
n1�c�S

ÿ
x�x, t, c�, c�� q�c�Tÿx�x, t, c�, c�� dc � v 00�x, t�, x < l�t�, t > 0,

Re
1

2pi

�
G

�
T
ÿ
x�x, t, c�, c�� kS

ÿ
x�x, t, c�, c�� dc � 0, x < l�t�, t > 0, �12�

where v 00 � @v0=@x and the following notations are introduced

S�x� � ÿm�gF 001 �x� � 2ig2F
00
2 �x�

�
, T�x� � m

�
2ig1F

00
1 �x� ÿ gF 002 �x�

�
, �13�
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R � g2 ÿ 4g1g2, q � gÿ 2g1g2, n1 � ig1
ÿ
1ÿ g22

�
: �14�

Applying the Radon transform in the form (see Appendix A, formula (A18))

F�x, c� � @

@x

�1
ÿ1

�1
ÿ1

f�x, t�d�xÿ ctÿ x� dx dt, �15�

to the right and left sides of Eqs. (12) and taking into account the properties of Radon transform carrier
(see the formulae (A20)±(A22) in Appendix A), we obtain

Re S�x� � 0, x < l� ÿ ct, x > l�, �16�

Re T�x� � 0, x < l� ÿ ct, x > l�, �17�

Re
1

mR

�
n1S�x� � qT�x�� � V 00�x�, l� ÿ ct < x < l�, �18�

Re
�
kS�x� � T�x�� � 0, l� ÿ ct < x < l�: �19�

Here l� � l�t��, where t� is a solution of equation (see Appendix A)

x� ct� ÿ l�t�� � 0, �20�
and

V 00�x� �
@

@x

�1
ÿ1

�1
ÿ1

v 00
ÿ
x, t 0

�
H�t 0 �H�tÿ t 0 �H�l�t 0 � ÿ x�dÿxÿ ct 0 ÿ x

�
dx dt 0: �21�

The Heaviside functions H�� � �� are introduced to emphasize that the carrier of the function v0�x, t� is
bounded.

The relations (16)±(19) can be treated as a system of boundary problems of Riemann±Hilbert type for
the functions S�x� and T�x�: With these known functions, the functions F 00j �x� can be determined from
Eq. (13) as

F 00j �x� � Lj�x�, �22�

where

L1�x� � 1

mR

�ÿ gS�x� � 2ig2T�x�
�
,

L2�x� � ÿ 1

mR

�
2ig1S�x� � gT�x��: �23�

Then the function F 00j �zj � can be found with the aid of Cauchy integral for the half-plane Im zj > 0

F 00j �zj � �
1

2pi

�1
ÿ1

Lj�x�
xÿ zj

dx, �24�

and next, the expressions for the stresses can be obtained from Eq. (10).
The system of boundary-value problems (16)±(19) reduces easily to a boundary-value problem for one
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unknown function. Multiplying the condition (16) by k and adding the conditions (16) and (17), we
write them in the form

Re
�
kS�x� � T�x�� � 0, x < l� ÿ ct, x > l�: �25�

The conditions (19) and (25) can be considered as a problem for the expression kS�x� � T�x�: The
solution of this problem is given by Cauchy type integral (see e.g. Gakhov, 1966) and in the class of
functions vanishing at in®nity has the form

kS�x� � T�x� � 0: �26�

Using Eq. (26) to eliminate the function T�x� from Eq. (18), we obtain

Re

�
1

mR

��n1 ÿ kq�S�x��� � V 00�x�, l� ÿ ct < x < l�: �27�

The conditions (27) and (16) represent a Riemann±Hilbert problem for the function S�x�: It is more
convenient to rewrite this problem as a Riemann problem (Gakhov, 1966) or, as a problem of
conjugation (Muskhelishvili, 1953a)

S��x� ÿ Sÿ�x� � 0, x < l� ÿ ct, x > l�,

S��x� ÿ R

�R

�n1 ÿ k �q

n1 ÿ kq
Sÿ�x� � 2mR

n1 ÿ kq
V 00�x�, l� ÿ ct < x < l�, �28�

in this case and elsewhere, the notations with overbar are the complex conjugation. The solution of
problem (28) (vanishing at in®nity) can be found using the known formulae for the Riemann problem
with a discontinuous coe�cient (Gakhov, 1966). Thus, we obtain for zj � x� i0

S��x� � 1

pi
mR
Q

"
G�x�

�l�
l�ÿct

G ÿ1
ÿ
x 0
�V 00ÿx 0�
x 0 ÿ x

dx 0 � piV 00�x�
#
: �29�

Here

G�x� �
�

l� ÿ x
l� ÿ ctÿ x

�a

, a � ÿ 1

2pi
ln b, �30�

where

b � R

�R

�Q

Q
, Q � n1 ÿ kq, �31�

provided that

ÿp < arg b < p: �32�

The expression for T�x� follows from Eq. (26).
Now, using the formulae (29), (26), (23) and (10), we obtain the expressions for stresses in the half-

plane
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�
sy�x, y, t�
sxy�x, y, t�

�
� m

2p2
Re

�
G

1

Q�c�
��ÿg2�c� ÿ 2kig�c�g2�c�

2ig�c�g1�c� ÿ 4kg1�c�g2�c�
�
P�z1�x, y, t, c�, c�

�
�
4g1�c�g2�c� � 2kig�c�g2�c�
ÿ2ig�c�g1�c� � kg2�c�

�
P�z2�x, y, t, c�, c�

�
dc: �33�

Here

P�zj � � G�zj �
�l�
l�ÿct

G ÿ1�x�V
0
0�x�

xÿ zj
dx,

where G is of the form (30).
The expressions (33), (20) and (21) determine entirely the stresses in the half-plane provided that the

function l�t� (the edge of contact zone) is known. If, however l�t� is unknown, then it is necessary to
complement the expressions (33), (20) and (21) with an equation for l�t�: The way of obtaining such an
equation is considered in the following section.

4. The stresses in the contact zone

Now, we consider the stresses in the contact zone for x < l�t� and y = 0. Taking into account Eq.
(10) and the notations (22) and (23), the expressions for stresses on the boundary of half-plane can be
written as�

sy�x, 0, t�
txy�x, 0, t�

�
� Re

1

2pi

�
G

"
S
ÿ
x�x, t, c�, c�

T
ÿ
x�x, t, c�, c�

#
dc: �34�

Substituting the expressions for S�x�, Eq. (29), and for T�x�, Eq. (26), into Eq. (34) and taking into
account Eqs. (30) and (9), we obtain"

sy�x, 0, t�
txy�x, 0, t�

#
� ÿ m

2p2

"
1

ÿk

#
Re

�
G

R�c�
Q�c�

(�
l� ÿ x� ct

l� ÿ x

�a�c�

�
�l�
l�ÿct

�
l� ÿ x 0

l� ÿ ctÿ x 0

�ÿa�c�
V 00
ÿ
x 0, c

�
x 0 ÿ x� ct

dx 0 � piV 00�x, t, c�
)

dc, �35�

where R�c�, Q�c� and a�c� have the form (see Eqs. (14), (30) and (31))

R�c� �
ÿ
2ÿ c2=c22

�2ÿ4 ��������������������
1ÿ c2=c21

q ��������������������
1ÿ c2=c22

q
, �36�

Q�c� � ic2cÿ22

��������������������
1ÿ c2=c21

q
ÿ k

�
2ÿ c2=c22 ÿ 2

��������������������
1ÿ c2=c21

q ��������������������
1ÿ c2=c22

q �
, �37�

a�c� � ÿ 1

2pi
ln
R�c�
�R�c�

�Q�c�
Q�c� : �38�

The integrands of Eq. (35) have the branch points 2c2, 2c1, c� and c��, where c� and c�� are the
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solutions of following equations

l��c�� ÿ x� c�t � 0, l��c��� ÿ x � 0: �39�

These integrands are analytic in the c-plane outside the cuts �ÿ1, ÿ cj), �cj,1), �c�,1� and �c��,1�
along the axis Im c � 0 and with a ®nite number of poles being excluded. Assume that these poles lie on
the axis Im c � 0: Transforming the contour G along the axis Im c � 0 and dividing the interval
�ÿ1,1� into �0, 2c2), �2c2, 2c1� and �2c1, 21), we write the expression (35) as

"
sy�x, 0, t�
txy�x, 0, t�

#
� ÿ m

2p2

"
1

ÿk

#
Re

8<:
 �0
ÿc2
�
�c2
0

!
R�c�
Q�c�

"�
l� ÿ x� ct

l� ÿ x

�Y�c�

�
�l�
l�ÿct

�
l� ÿ x 0

l� ÿ ctÿ x 0

�ÿY�c�
V 00
ÿ
x 0, c

�
x 0 ÿ x� ct

dx 0 � piV 00�x, t, c�
#

�
 �ÿc2
ÿc1
�
�c1
c2

!
R1�c�
Q1�c�

"�
l� ÿ x� ct

l� ÿ x

�o�c��l�
l�ÿct

�
l� ÿ x 0

l� ÿ ctÿ x 0

�ÿo�c�

� V 00
ÿ
x 0, c

�
x 0 ÿ x� ct

dx 0 � piV 00�x, t, c�
#

�
 �ÿc1
ÿ1
�
�1
c1

!
R2�c�
Q2�c�

" �l�
l�ÿct

V 00
ÿ
x 0,c

�
x 0 ÿ x� ct

dx 0 � piV 00�x, t, c�
#9=; dc, �40�

where

Y�c� � 1

p
arctan

c22 c
2
��������������������
1ÿ c2=c21

q
k

�
2ÿ c2=c22 ÿ 2

��������������������
1ÿ c2=c21

q ��������������������
1ÿ c2=c22

q � , 0 < Y <
1

2
for kn1�c�q�c� > 0,

o�c� � Y�c� ÿ 1

p
arctan

4
��������������������
1ÿ c2=c21

q ��������������������
c2=c22 ÿ 1

q
ÿ
2ÿ c2=c22

�2 , 0 < o <
1

2
,

R1�c� �
ÿ
2ÿ c2=c22

�2ÿ4i ��������������������
1ÿ c2=c21

q ���������������������
c2=c22 ÿ 1,

q

R2�c� �
ÿ
2ÿ c2=c22

�2�4 ��������������������
c2=c21 ÿ 1

q ���������������������
c2=c22 ÿ 1,

q

Q1�c� � icÿ22 c2
��������������������
1ÿ c2=c21

q
ÿ k

�
2ÿ c2=c22 ÿ 2i

��������������������
1ÿ c2=c21

q ��������������������
c2=c22 ÿ 1

q �
,
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Q2�c� � ÿcÿ22 c2
��������������������
c2=c21 ÿ 1

q
ÿ k

�
2ÿ c2=c22 � 2

��������������������
c2=c21 ÿ 1

q ��������������������
c2=c22 ÿ 1

q �
: �41�

The values of arctangents in Eq. (41) are selected with account for the conditions (7) and (7a).
In the case when a geometry of rigid body is such that the function l�t� (the edge of the contact zone)

being known, the expressions (40), (20) and (21) entirely determine the stresses in the contact zone. In
the case where the rigid body has a di�erentiable boundary in the edge of the contact zone, the function
l�t� is unknown. The equation for l�t� can be obtained (as this is made in the analogous problems of
elastostatics, see e.g. Galin, 1953) from the following obvious condition

sy�x, 0, t�jx�l�t� � 0, �42a�

which, taking into account (40) can be represented in the form

Re

�1
ÿ1

R�c�
Q�c�

(�
l� ÿ l�t� � ct

l� ÿ l�t�
�a�c�
�
�l�
l�ÿct

�
l� ÿ x 0

l� ÿ ctÿ x 0

�ÿa�c�
V 00
ÿ
x 0,c

�
x 0 ÿ l�t� � ct

dx 0 � piV 00�l�t�, t, c�
)

dc � 0,

�42b�

where l� and l are related by Eq. (20). A simple analysis of the left-hand side of Eq. (42b) shows that
this equation has a solution, i.e., the stresses are bounded (in fact, zero) at the point x � l�t�, only in the
case where _l�t� < cR or _l�t� > c1 � _l�t� � dl=dt; cR is the Rayleigh speed: R�cR� � 0). This means that sy
and txy are unbounded for cR < _l�t� < c1 provided that kn1q > 0 for cR < c < c2: In this case, l�t� can be
found from the expression for v 00�x,t� in Eq. (12), which with account for Eqs. (26) and (31) can be
written in the form

Re
1

2pi

�
G

Q�c�
mR�c�S�x, t, c� dc � v 00�x, t�: �43a�

Integrating Eq. (43a) with respect to x from ÿ1 to l�t� and assuming that v0�x, t�40 for x4 ÿ1, we
obtain the following equation for l�t� in the case cR < _l�t� < c1

ÿ 1

2p2

�l�t�
ÿ1

Re
1

2pi

�1
ÿ1

(�
l� ÿ l�t� � ct

l� ÿ l�t�
�a�c�
�
�l�
l�ÿct

�
l� ÿ x 0

l� ÿ ctÿ x 0

�ÿa�c�
V 00
ÿ
x 0,c

�
x 0 ÿ l�t� � ct

dx 0

� piV 00�l�t�, t, c�
)

dc dx � v0�l�t�, t�: �43b�

This condition has the obvious kinematic sense. Note that Eqs. (42b) and (43b), and also Eq. (20)
simplify essentially in the case where _l�t� � constant (e.g., in the self-similar (automodeling) case).

Now, we derive the asymptotic expressions for stresses at the point x � l�t�: Let l� � l�t�� ' l�t� ÿ
_l�t��tÿ t�� for x4 l�t�: Then from Eq. (20), we have

t� ' tÿ xÿ l�t�
cÿ _l�t� , l�t�� ' xÿ c�xÿ l�t��

cÿ _l�t� : �44�

Substituting these asymptotic expressions into Eq. (35) or (40), we ®nd for x4 l�t� ÿ 0
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�
sy�x, 0, t�
txy�x, 0, t�

�
' ÿ m

p2

�
1
ÿk

� �1
_l�t�

Re

8<:R�c�
Q�c�

 
_l�t� ÿ c

_l�t� ÿ x
t

!a�c�

�
�l�t�
l�t�ÿct

ÿ
x 0 � ctÿ l�t��a�c�ÿ1ÿx 0 ÿ l�t��ÿa�c�V 00ÿx 0, c� dx 0 � piV 00�l�t�, t, c�

9=; dc:

�45�

It follows from Eqs. (45), (42a) and (42b)) that, for example, in the particular case where the rigid body
(punch) has a di�erentiable boundary at the point of x � l�t�, the stresses have the following behavior
for x4 l�t�

sy0txy0

8>>>>><>>>>>:
0 for _l�t� < cR

�l�t� ÿ x�ÿY� _l�t�� for cR < _l�t� < c2

�l�t� ÿ x�ÿo� _l�t�� for c2 < _l�t� < c1
v 00�x, t�jx�l�t� for c1 < _l�t� <1 ÿ

v 00 � @v0=@x
�
,

�46�

where Y� _l�t�� and o� _l�t�� are of the form Y�c� and o�c� from Eq. (41) for c � l�t� and it is accepted that
kn1q > 0 for cR < c < c2:

5. Problem with viscous friction: general solution

Now, we consider the problem with the more complicated boundary conditions (1) and (3). These
conditions relate the case of contact with viscous friction. Substituting Eq. (10) into Eqs. (1) and (3) and
applying the Radon transform (15) to the obtained expressions, we have

Re S�x� � Re T�x� � 0, x < l� ÿ ct, x > l�,

Re
1

mR

�
n1S�x� � qT�x�� � V 00�x�, l� ÿ ct < x < l�,

Re

�
fqc

mR
S�x� �

�
1ÿ fn2c

mR

�
T�x�

�
� fW0�x�, l� ÿ ct < x < l�, �47�

where S�x�, T�x�, R, nj and q are determined in Eqs. (13) and (14), V 00�x� has the form (21), l� is
determined in Eq. (20), and

W0�x� � @

@x

�1
ÿ1

�1
ÿ1

w0

ÿ
x, t 0

�
H�t 0 �H�tÿ t 0 �H�l�t 0 � ÿ x�dÿxÿ ct 0 ÿ x

�
dx dt 0: �48�

The relations (47) can be regarded as a set of Riemann±Hilbert problems for functions S�x� and T�x�:
This set, unlike the set (16)±(19) of the foregoing problem, does not allow a simple decomposition into
two independent problems for the functions S�x� and T�x�:

Using the known relation between Riemann±Hilbert and Riemann problems (Gakhov, 1966), we write
the system of boundary-value problems (47) in more convenient form of Riemann problems:

S��x� ÿ Sÿ�x� � 0, T ��x� ÿ T ÿ�x� � 0, x < l� ÿ ct, x > l�, �49�
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n1
R
S��x� ÿ �n1

�R
Sÿ�x� � q

R
T ��x� ÿ �q

�R
T ÿ�x� � 2mV 00�x� l� ÿ ct < x < l�, �50�

ÿ q

R
S��x� � �q

�R
Sÿ�x� �

�
n2
R
ÿ m

fc

�
T ��x� ÿ

�
�n2
�R
ÿ m

fc

�
T ÿ�x� � 2mcÿ1W0�x�,

l� ÿ ct < x < l�:

�51�

We now multiply, e.g., Eq. (50) by a certain constant s and add it term-by-term to Eq. (51):

1

R
� ÿ q� sn1�

�
S��x� � aT ��x�

�
ÿ 1

�R
� ÿ �q� s �n1 �

�
Sÿ�x� � bT ÿ�x�� � 2m

�
sV 00�x� ÿ cÿ1W0�x�

�
: �52�

Here

a � n2 � sqÿ mRf ÿ1cÿ1

ÿq� sn1
, b � �n2 � s �qÿ m �Rf ÿ1cÿ1

ÿ �q� s �n1
: �53�

We choose s so that a � b: Then, from Eq. (53), we obtain the following equation for s

n2 � sqÿ mRf ÿ1cÿ1

ÿq� sn1
� �n2 � s �qÿ m �Rf ÿ1cÿ1

ÿ �q� s �n1
,

which has a solution

sn � 1

2
mÿ11

h
p� � ÿ 1�nÿ1

ÿ
p2 ÿ 4m1m2

�1=2i
, n � 1, 2, �54�

where

mj � ÿ �njq� nj �q� mf ÿ1cÿ1�jÿ 1�
ÿ

�Rqÿ R �q
�
, j � 1, 2,

p � ÿn1 �n2 � �n1n2 � mf ÿ1cÿ1
ÿ

�Rn1 ÿ R �n1
�
: �55�

Substituting the values s1 and s2 from Eq. (54) term-by-term into Eq. (53) and then, together with the
corresponding values of a1 and a2 (since a � b� into Eq. (52), we obtain�

S��x� � anT
��x�

�
ÿ bn

�
Sÿ�x� � anT

ÿ�x�� � 2nn
�
snV

0
0�x� ÿ cÿ1W0�x�

�
,

n � 1, 2; l� ÿ ct < x < l�,
�56�

where

an � n2 � snqÿ mRf ÿ1cÿ1

ÿq� snn1
, bn �

R

�R

ÿ �q� sn �n1
ÿq� snn1

, nn � mR
ÿq� snn1

: �57�

The conditions (49) can be written in the form, analogous to Eq. (56). For this purpose, we multiply the
condition for S by an and add to the condition for T:�

S��x� � anT
��x�

�
ÿ �Sÿ�x� � anT

ÿ�x�� � 0, x < l� ÿ ct, x > l�; n � 1, 2: �58�
The conditions (56) and (58) represent two independent Riemann problems (for n � 1 and n � 2,
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respectively) for functions S�x� � anT�x�: The solutions of these problems which vanish at in®nity can be
written out for the case of discontinuous coe�cients using the known formulae by Gakhov (1966). As a
result, we obtain for zj � x� i0

S��x� � anT
��x� � nn

pi
Gn�x�

�l�
l�ÿct

G ÿ1n

ÿ
x 0
�h
snV

0
0

ÿ
x 0
�
ÿ cÿ1W0

ÿ
x 0
�i dx 0

x 0 ÿ x
� nn

�
snV

0
0�x� ÿ cÿ1W0�x�

�
,

n � 1, 2:

�59�
Here

Gn�x� �
�

l� ÿ x
l� ÿ ctÿ x

�an

, an � ÿ 1

2pi
ln bn, n � 1, 2, �60�

provided that

ÿp < arg bn < p: �61�
Considering Eq. (59) as a set of two (for n � 1, 2� algebraic equations with respect to the functions S�x�
and T�x�, we ®nd"

S�x�
T�x�

#
�
X2
n�1

� ÿ 1�nÿ1
a2 ÿ a1

nn

�
"
a3 ÿ n

ÿ1

#(
1

pi
Gn�x�

�l�
l�ÿct

G ÿ1n

ÿ
x 0
�h
snV

0
0

ÿ
x 0
�
ÿ cÿ1W0

ÿ
x 0
�i dx 0

x 0 ÿ x
� snV

0
0�x� ÿ cÿ1W0�x�

)
:

�62�
Now, the formulae (10), (22)±(24) and (62) give the formal expressions for stresses in the half-plane"

sy�x, y, t�
txy�x, y, t�

#
� ÿ 1

2p2
Re

� 2

n�1

� ÿ 1�nÿ1nn�c�
a2�c� ÿ a1�c�

1

R�c�

�
("

g2�c�a3ÿn�c� ÿ 2ig�c�g2�c�
ÿ2ig�c�g1�c�a3ÿn�c� ÿ 4g1�c�g2�c�

#
Nn�z1�x, y, t, c�, c�

�
"
4g1�c�g2�c�a3ÿn�c� ÿ 2ig�c�g2�c�
2ig�c�g1�c�a3ÿn�c� ÿ g2�c�

#
Nn�z2�x, y, t, c�, c�

)
dc, �63�

where

Nn�zj � � Gn�zj �
�l�
l�ÿct

G ÿ1n �x�
�
snV

0
0�x� ÿ cÿ1W0�x�

� dx
xÿ zj

: �63a�

6. Expressions for stresses in the contact zone

Substituting the expressions for S�x� and T�x�, Eq. (62), into Eq. (34) and taking into account Eqs.
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(60) and (9), we obtain"
sy�x, 0, t�
txy�x, 0, t�

#
� ÿ 1

2p2
Re

�
G

X2
n�1

� ÿ 1�nÿ1nn�c�
a2�c� ÿ a1�c�

"
a3ÿn�c�
ÿ1

#(�
l� ÿ x� ct

l� ÿ x

�an�c�

�
�l�
l�ÿct

�
l� ÿ x 0

l� ÿ ctÿ x 0

�ÿan�c�h
sn�c�V 00

ÿ
x 0, c

�
ÿ cÿ1W0

ÿ
x 0, c

�i dx 0

x 0 ÿ x� ct

� pi
�
sn�c�V 00�x, t, c� ÿ cÿ1W0�x, t, c�

�)
dc: �64�

The integrands (in the integral with respect to c ) in Eq. (64) are analytic in the c-plane outside the cuts
(ÿ1, ÿcj), �cj, 1), �c�,1� and �c��,1� along the axis Im c � 0 and with a ®nite number of poles being
excluded �c� and c�� are the solutions of the Eq. (39)). Transforming the contour G along the axis
Im c � 0, we write the expression (64) in the resultant form"

sy�x, 0, t�
txy�x, 0, t�

#
� ÿ 1

2p2
Re

 �0
ÿc1
�
�c1
0

!X2
n�1

(
� ÿ 1�nÿ1nn�c�
a2�c� ÿ a1�c�

"
a3ÿn�c�
ÿ1

#�
l� ÿ x� ct

l� ÿ x

�an�c�

�
�l�
l�ÿct

�
l� ÿ x 0

l� ÿ ctÿ x 0

�ÿan�c�h
sn�c�V 00

ÿ
x 0, c

�
ÿ cÿ1W0

ÿ
x 0, c

�i dx 0

x 0 ÿ x� ct

� pi
�
sn�c�V 00�x, t, c� ÿ cÿ1W0�x, t, c�

�)
dc� m

 �ÿc1
ÿ1
�
�1
c1

!
R���c�
S�c�

�
�l�
l�ÿct

24ÿR���c�f ÿ1cÿ1 ÿ n�2�c�
�
V 00
ÿ
x 0, c

�
ÿ q���c�cÿ1W0

ÿ
x 0, c

�
q���c�V 00

ÿ
x 0, c

�
ÿ n�1�c�cÿ1W0

ÿ
x 0, c

�
35 dx 0dc
x 0 ÿ x� ct

: �65�

Here

S � q��2 � n�1n
�
2 ÿ mR��n�1f

ÿ1cÿ1, R�� � g2 � 4t�1g
�
2,

n�j � ÿg�j
ÿ
1ÿ g2

�
, q�� � g� 2g�1g

�
2, g�j �

�
c2=c2j ÿ 1

�1=2
, �66�

and for sn�c�, an�c�, nn�c� and an�c� in Eq. (65) we have from Eqs. (54), (55), (57) and (60):
For 0 < c < c2

sn � mR
2qfc

�
1� � ÿ 1�nÿ1

����
D
p �

, D � 1ÿ 4
n2
n1

�
qfc

mR

�2

,

an � n2 � snqÿ mRf ÿ1cÿ1

q� snn1
, nn � mR

ÿq� snn1
,

an � yn � 1

p
arctan

g1
ÿ
1ÿ g2

�
sn

q
, Dr0,

S.V. Shmegera / International Journal of Solids and Structures 37 (2000) 6277±6296 6289



an � en � 1

2p
arctan

dg1
ÿ
1ÿ g2

�
qÿ gng1

ÿ
1ÿ g2

� � 1

2p
arctan

dg1
ÿ
1ÿ g2

�
q� gng1

ÿ
1ÿ g2

�
ÿ 1

2pi
ln

24ÿÿ q� gng1
ÿ
1ÿ g2

��2�d 2g21
ÿ
1ÿ g2

�2ÿ
q� gng1

ÿ
1ÿ g2

�� 2�d 2g21
ÿ
1ÿ g2

�2
351=2

, D < 0,

d � mRf ÿ1cÿ1, gn � d� ÿ 1�nÿ1
��������
ÿD
p

; �67�

for c2 < c < c1

sn � mg2f ÿ1cÿ1 ÿ n�2
2g1g�2

2641� � ÿ 1�nÿ1
�������������������������������������������������������������
1ÿ 4

ig1g
�
2

ÿ
2mg2f ÿ1cÿ1 ÿ g�2

�ÿ
mg2f ÿ1cÿ1 ÿ n�2

�2
vuut

375,

nn � mR�

ÿq� � snn1
, an � n�2 � snq

� ÿ mR�f ÿ1cÿ1

q� � snn1
,

an � dn � 1

2
ÿ 1

p
arctan

4g1g
�
2

g2
ÿ 1

2
arctan

rnrg1
ÿ
1ÿ g2

�
� 2g1g

�
2

gÿ rnig1
ÿ
1ÿ g2

� � 1

2p
arctan

rnrg1
ÿ
1ÿ g2

�
� 2g1g

�
2

g� rnig1
ÿ
1ÿ g2

�

ÿ 1

2pi
ln

264ÿgÿ rnig1
ÿ
1ÿ g2

��2��rnrg1ÿ1ÿ g2
�
� 2g1g

�
2

�2

ÿ
g� rnig1

ÿ
1ÿ g2

�� 2�ÿrnrg1ÿ1ÿ g2
�� 2g1g�2

�2
375

1=2

, �68�

where

R� � g2 ÿ 4ig1g
�
2, q� � gÿ 2ig1g

�
2, rnr � Re sn, rni � Im sn: �69�

If a geometry of the rigid body is such that the function l(t ) is unknown, then it can be found from the
condition (42a) which in this case is of the form

Re

�1
ÿ1

X2
n�1

mR�c�
ÿq�c� � sn�c�n1�c�

� ÿ 1�nÿ1a3ÿn�c�
a2�c� ÿ a1�c�

(�
l� ÿ l�t� � ct

l� ÿ l�t�
�an�c�

�
�l�
l�ÿct

�
l� ÿ x 0

l� ÿ ctÿ x 0

�ÿan�c�h
sn�c�V 00

ÿ
x 0, c

�
ÿ cÿ1W0

ÿ
x 0, c

�i dx 0

x 0 ÿ l�t� � ct

� pi
�
sn�c�V 00�l�t�, t, c� ÿ cÿ1W0�l�t�, t, c�

�)
dc � 0: �70�

This equation has a solution, i.e., the stresses are bounded (in fact, zero) at the point x � l�t�, only in
the case where _l�t� < cR or _l�t� > c1: In the case where cR < _l�t� < c1 the function l�t� can be found from
the expression for v 00�x, t� in Eq. (12) which after integration with respect to x gives the following
equation for l�t�
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�l�t�
ÿ1

Re
1

2pi

�
G

1

mR�c�
�
n1�c�S

ÿ
x�x, t, c�, c�� q�c�Tÿx�x, t, c�, c�� dc dx � v 00�l�t�, t�: �71�

Here S�x� and T�x� have the form (62).
In the limit for x4 l�t� ÿ 0 with account for Eq. (44), we ®nd

�
sy�x, 0, t�
txy�x, 0, t�

�
' Re

�1
_l�t�

X2
n�1

�
a3ÿn�c�
ÿ1

� 
cÿ _l�t�
l�t� ÿ x

t

!an�c�

Kn�t, c� dc, �72�

where

Kn�t, c� � ÿ 1

p2

� ÿ 1�nÿ1nn�c�
a2�c� ÿ a1�c�

(�l�t�
l�t�ÿct

ÿ
x 0 � ctÿ l�t��an�c�ÿ1ÿx 0 ÿ l�t��ÿan�c�

�
h
sn�c�V 00

ÿ
x 0, c

�
ÿ cÿ1W0

ÿ
x 0, c

�i
dx 0 � pi

�
sn�c�V 00�l�t�, t, c� ÿ cÿ1W0�l�t�, t, c�

�)
:

�73�

It follows from Eqs. (71), (65), (67) and (68) that in the particular case where the rigid body (punch) has
a di�erentiable boundary at the point of x � l�t�, the stresses have the following limiting behavior for
x4 l�t�

sy0txy0

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

0 for _l�t� < cR and D
ÿ
_l�t�
�
r0,X2

n�1
An�l�t� ÿ x�ÿyn� _l�t�� for cR < _l�t� < c2 and D

ÿ
_l�t�
�
r0,

X2
n�1

Bn�l�t� ÿ x�ÿenr� _l�t��ÿieni� _l�t�� for 0 < _l�t� < c2 and D
ÿ
_l�t�
�
< 0,

X2
n�1

Cn�l�t� ÿ x�ÿdnr� _l�t��ÿidni� _l�t�� for c2 < _l�t� < c1,

Av 00�l�t�, t� � Bw0�l�t�, t�
ÿ
v 00 � @v0=@x

�
for c1 < _l�t� <1

�74�

Here An, Bn, Cn, A and B are some bounded constants, D� _l�t�� and yn� _l�t�� are of the form D�c� and y�c�
from Eq. (67) for c � l�t�, en� _l�t�� � enr� _l�t�� � ieni� _l�t�� �enr � Re en, eni � Im en� and dn� _l�t�� � dnr� _l�t�� �
idni� _l�t�� �dnr � Re dn, dni � Im dn� are of the form en�c� and dn�c� from Eqs. (67) and (68) for c � l�t�: It
is seen from Eq. (74) that the stresses have a oscillating singularity in the case 0 < _l�t� < c2 for D� _l�t�� <
0 and in the case c2 < _l�t� < c1, and the stresses change sign an in®nite number of times at x4 l�t�: This
lead to the violation of the condition syR0 in the conditions (3). Consequently, the conditions of
viscous friction in the form (3) are acceptable (from the viewpoint of realization of the condition syR0�
only in the case where 0 < _l�t� < c2 and D� _l�t��r0:

Note, that the oscillating singularities are typical for some elastostatic and elastodynamic problems.
The typical examples are the problems of interfacial cracks in the Mode I or mixed Mode I±II cases (see
e.g. Achenbach et al., 1976) and the contact problems with adhesion (see e.g. Muskhelishvili, 1953b).
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7. Concluding remarks

The practical suitability is shown of the new method proposed by Shmegera (1997, 1998) to construct
the exact solutions of non-automodeling initial boundary-value mixed problems of elastodynamics with
the conditions of contact friction.

Here, we restrict our consideration to formal analysis of the obtained solutions, i.e., the existence,
closure and consistency of solution. Certainly, these solutions require a more detailed analytical and
numerical analysis, which will be a subject of a separate paper.
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Appendix A. A representation of solution of wave equation and its a relation with the Radon transform.

A.1. A two-dimensional Radon transform

A two-dimensional Radon transform F�s, o� of some function f(x) is determined (see, e.g., Ludvig,
1966; Helgason, 1980) as an integral along the line ooo � x � s �ooo � fo1, o2g, x � fx1, x2g� of the
following form

F�s, ooo� �
�1
ÿ1

�1
ÿ1

f�x�d�ooo � xÿ s� dx1 dx2, �A1�

where d��� is Dirac delta-function. It is obvious that F�s, ooo� is homogeneous function with the
homogeneity degree equal to ÿ1:

F�as, aooo� � jajÿ1F�s, ooo�, �A2�
and F�s, ooo� is an even function. It follows from Eq. (A1) that f �x� � 0 for r > 0 �r �

�����������������
x 2
1 � x 2

2

q
� then

F�s, ooo� � 0 for jsj > a:
An inverse formulae of Radon transform (A1) can be written in the following form

f�x� � ÿ 1

4p2

�
G

�1
ÿ1

@F�s, o1, o2�
@s

ds�o1do2 ÿ o2do1�
sÿ o1x1 ÿ o2x2

, �A3�

where G is an arbitrary contour in the plane o:
For a ®xed value of o, the integrand in Eq. (A3) (in the integral with respect to o� is orthogonal to

the o-plane. In the other words, the integrand of inverse formula is a plane wave. From this point of
view, the formula (A3) can be considered as a continuous expansion of function f �x� into the plane
waves of arbitrary form.

A.2. A representation of the solution of two-dimensional wave equation

This represents the solution of two-dimensional wave equation
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@ 2u

@x 2
� @

2u

@y2
� 1

c20

@ 2u

@ t2
, �A4�

in the form of continuous (integral) superposition of some arbitrary functions

u�x, y, t� � 1

2pi

�
G
F�z�x, y, t, c�, c� dc, �A5�

where F�z� is an arbitrary, twice di�erentiable (or analytic, if z is complex) function. G is an arbitrary
contour in the complex plane c. Substituting Eq. (A5) into (A4), we ®nd that the expression (A5) is the
solution of wave equation (A4) if and only if the function z satis®es the following equations

@ 2z

@x 2
� @

2z

@y2
� 1

c20

@ 2z

@t2
,

�
@z

@x

�2

�
�
@z

@y

�2

� 1

c20

�
@z

@t

�2

: �A6�

It is well known (see, for example, Smirnov, 1974) that the general solution of system (A6) determines
from the equation

k�z� � l�z�t�m�z�x� n�z�y, �A7�
in which the functions l, m and n are related by

l 2�z� � c20
�
m 2�z� � n2�z�

�
: �A8�

Consider a simple case, most interesting for the expression (A5). Assume the functions l, m and n to be
constant, and the function k to be equal to z. Then, the function F(z ) is the plane wave for the real l, m
and n. If l, m and n are the complex values with a variable argument, then from the physical point of
view, the function F(z ) is not the plane wave. This function F(z ) for the complex z can be called as a
complex plane wave.

Denoting l � ÿc and m � ÿ1, we ®nd from Eq. (A8) that n �2i�1ÿ c2=c20 �1=2 where i � �������ÿ1p
: For

selection of the uniquely branch of radical �1ÿ c2=c20 �1=2 in the complex plane c, we make the cuts
�ÿ1, ÿ c0� and �c0,1� along the axis Im c � 0 and ®x this branch by the condition �1ÿ c2=c20 �1=2 > 0
for Im c � 0: In this case the expression for z becomes

z � xÿ ct� iy
��������������������
1ÿ c2=c20

q
, �A9�

or, in the terms of following notations

x � xÿ ct, Z � gy, g �
��������������������
1ÿ c2=c20

q
, �A10�

in the form

z � x� iZ: �A11�
In the case under consideration and provided that c < c0 the function F�z�, in the terms of x and Z,
satis®es the Laplace's equations

@ 2F

@x2
� @

2F

@Z2
� 0: �A12�

In the case c > c0, the Eq. (A12) reduce to the one-dimensional wave equation.
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Since the real and imaginary parts of Eq. (A5) satisfy Eq. (A4), the solution can be selected in the
form of real part of representation (A5):

u�x, y, t� � Re
1

2pi

�
G
F

�
xÿ ct� iy

��������������������
1ÿ c2=c20

q
, c

�
dc: �A13�

Let, now, u0�x, t� is a value of u�x, y, t� for y � 0:

u�x, 0, t� � Re
1

2pi

�
G
F �

ÿ
x�x, t, c�, c� dc � u0�x, t�: �A14�

Here F ��z� is the boundary value of F ��x�, which is analytic in the half-plane Im z > 0: By using the
relation F ÿ�x� � ÿ �F

��x� where the overbar on F ��x� denotes the complex conjugate, we rewrite Eq.
(A14) in the form

1

4pi

�
G

h
F �

ÿ
x�x, t, c�, c�� F ÿ

ÿ
x�x, t, c�, c�i dc � u0�x, t�: �A15�

Now, we use Plemelj's formulae (see, for example, Muskhelishvili, 1953a) to rewrite the expression
under the integral sign in Eq. (A12) as

F ��x� � F ÿ�x� � 1

pi

�1
ÿ1

U0

ÿ
x 0
�

x 0 ÿ x
dx 0, �A16�

where U0�x� is the function which satis®es the HoÈ lder condition (see, e.g., Gakhov, 1966) in all the
points (including in®nity point). Substituting Eq. (A16) into Eq. (A15), we obtain

ÿ 1

4p2

�
G

�1
ÿ1

U0

ÿ
x 0, c

�
x 0 ÿ x�x, t, c� dx 0 dc � u0�x, t�: �A17�

If the function U0�x, c� is derivative (with respect to x� of the two-dimensional Radon transform of
function u0�x, t� (see the formulae (A1) and (A2)), i.e., if

U0�x, c� � @

@x

�1
ÿ1

�1
ÿ1

u0�x, t�d�xÿ ctÿ x� dx dt, �A18�

then the expression (A16) and, consequently, (A15) can be considered as the inverse formulae of two-
dimensional Radon transform (see the formula (A3) for x � fx, tg and o � f1, ÿ cg).

Observe that application of Radon transform to the expression (A14) gives

Re F ��x� � U0�x�, �A19�

i.e., transformation of left-hand side of Eq. (A14) actually eliminates the operation of integration with
respect to c.

It should be noted that in the expressions (A17) and (A18) (from consideration of convenience) we
somewhat depart from the formal separation of operations, accepted in the literature (see Eqs. (A1) and
(A3)), where the integral part of formula (A18) is called the Radon transform, and the operation of
di�erentiation is introduced in the inverse formulae. Nevertheless, we will call the expression (A18) as
the Radon transform.
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A.3. Some properties of the carrier of Radon transform

Let the function f �x, t� has the following values depending on the intervals of change of variables x
and t

f�x, t� �
8<: f0�x, t� �t < 0, ÿ1 < x <1�,
f1�x, t� �t > 0, ÿ1 < x < l�t��,
f2�x, t� �t > 0, l�t� < x <1�,

�A20�

then the Radon transform of the function f �x, t� has the form

@

@x

�1
ÿ1

�1
ÿ1

8<: f0�x, t 0 �H� ÿ t�
f1�x, t 0 �H�t 0 �H�tÿ t 0 �H�l�t 0 � ÿ x�
f2�x, t 0 �H�t 0 ÿ t�H�xÿ l�t 0 ��

9=;dÿxÿ ct 0 ÿ x
�

dx dt 0

� @

@x

�1
ÿ1

8<: f0�ct 0 � x, t 0 �H� ÿ t 0 �
f1�ct 0 � x, t 0 �H�t 0 �H�tÿ t 0 �H

ÿ
l�t 0 � ÿ ct 0 ÿ x

�
f2�ct 0 � x, t 0 �H�t 0 ÿ t�H

ÿ
ct 0 � xÿ l�t 0 �

�
9=; dt 0

�
8<:F0�x� �x > 0� for t < 0,
F1�x� �l� ÿ ct < x < l��,
F2�x� �x < l� ÿ ct�:

�A21�

Here H�. . .� is the Heaviside function and l� � l�t�� where t� is a solution of equation

l�t�� ÿ ct� ÿ x � 0, �A22�
the left-hand side of which is the argument of Heaviside function in Eq. (A21).
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